If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-20n+39=0
a = 1; b = -20; c = +39;
Δ = b2-4ac
Δ = -202-4·1·39
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{61}}{2*1}=\frac{20-2\sqrt{61}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{61}}{2*1}=\frac{20+2\sqrt{61}}{2} $
| x3+2=x4+3 | | Y/(1.2x3.7)-4.5=19.5 | | 2n+2n=500n | | (2x+19)+8=5x | | Y=8/5x+5 | | 7(7z+10)=9(5z+10) | | 4x²=-2x²+5x-4 | | -3=(3x-10) | | 3(2x-5=9(10-x) | | 70-4x=28+2x | | 5(p-1)=3p+7 | | 49z^2-56z+16=0 | | 2(4d-8)=0 | | (x-8)(2x+10)=0 | | (x-8)(2x+10=0 | | 2(2x+2)=-13+x | | 12x+7x^2=x-5 | | 3y=y÷2+5 | | 53y=5*5y | | 2z^2=3z+5 | | Ax16=96 | | A^n=36n | | 3^(7x-2)-1=0 | | -10-2z=3 | | (2x+3)=x^2-2x+2 | | X²+10x-21=0 | | 3/15=x/3 | | 4x=x±15 | | 2+4x=9x−5 | | 90x-15x+135=(12+2x)×18-3x) | | t^2+9t=20=4t-6 | | 12−5x=13x−7 |